Search results for "Ordered geometry"

showing 4 items of 4 documents

Three viewpoints on the integral geometry of foliations

1999

We deal with three different problems of the multidimensional integral geometry of foliations. First, we establish asymptotic formulas for integrals of powers of curvature of foliations obtained by intersecting a foliation by affine planes. Then we prove an integral formula for surfaces of contact of an affine hyperplane with a foliation. Finally, we obtain a conformally invariant integral-geometric formula for a foliation in three-dimensional space.

Convex geometryMathematics::Dynamical SystemsGeneral MathematicsMathematical analysisAbsolute geometryGeometry53C65Viewpoints53C12Integral geometryOrdered geometryMathematics::Differential GeometryConformal geometryMathematics::Symplectic GeometryMathematics
researchProduct

Projective Geometry on Modular Lattices

1995

Publisher Summary This chapter focuses on projective geometry on modular lattices. Incidence and Order are basic concepts for a foundation of modern synthetic geometry. These concepts describe the relative location or containment of geometric objects and have led to different lines of geometry, an incidence-geometric and a lattice-theoretic one. Modularity is one of the fundamental properties of classical projective geometry. It makes projections into join-preserving mappings and yields perspectivities to be (interval) isomorphisms. It is therefore natural that order-theoretic generalizations of projective geometry are based on modular lattices and even more, the theory of modular lattices …

Discrete mathematicsPure mathematicsCollineationHigh Energy Physics::LatticeDuality (projective geometry)Ordered geometryProjective spaceErlangen programProjective differential geometryMap of latticesMathematicsProjective geometry
researchProduct

General measure theory

1995

Discrete mathematicsPure mathematicsConvex geometryEuclidean spacePoint–line–plane postulateOrdered geometryAffine spaceProduct measureBorel regular measureMeasure (mathematics)Mathematics
researchProduct

Euclidean geometry and physical space

2006

It takes a good deal of historical imagination to picture the kinds of debates that accompanied the slow process, which ultimately led to the acceptance of non-Euclidean geometries little more than a century ago. The difficulty stems mainly from our tendency to think of geometry as a branch of pure mathematics rather than as a science with deep empirical roots, the oldest natural science so to speak. For many of us, there is a natural tendency to think of geometry in idealized, Platonic terms. So to gain a sense of how late nineteenth-century authorities debated over the true geometry of physical space, it may help to remember the etymological roots of geometry: “geo” plus “metria” literall…

HistoryAnalytic geometryConvex geometryHistory and Philosophy of ScienceNon-Euclidean geometryAestheticsGeneral MathematicsPoint–line–plane postulateEuclidean geometryOrdered geometryAbsolute geometryTransformation geometryThe Mathematical Intelligencer
researchProduct